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The problem of the timeoptimal incidence on to a desired point of geometrical space of a perturbed 

dynamical system on which a controlling force of limited modulus acts is investigated. The 

mathematical apparatus for solving this problem is based on the use of methods of the theory of 

optimal control in the form of the maximum principle and of a small parameter (of regular 

perturbations). The generating (unperturbed) problem of optimal control of the motion in both the 

open-loop and feedback forms is studied in detail. The phenomenon of the irregular dependence of the 

feedback control and of the Bellman function of the system on the phase variables (geometrical 

coordinates and velocities) is found and analysed in detail in convenient self-similar variables. An 

algorithm for solving the problem taking perturbing factors of general form into account is developed 

and illustrated by an example. Its justification requires further study. 

1. STATEMENT OF THE PROBLEM AND THE MAXIMUM PRINCIPLE 

A perturbed controllable dynamical system described by the second-order vector equation 
with known initial data 

is considered. 

i=u+Ef(x,i), x(0) = x0, i(0) = i” (1.1) 
XEE", na2, i=dxldt, ~~ro,~l)l 

Here u is a control, of limited modulus, which belongs to the class of piecewise-continuous 
functions of time t, and the numerical parameter E specifies the magnitude of perturbations of 
fairly general form ef and is henceforth assumed to be small (e41), i.e. the control u is the 
factor governing the acceleration. For system (1.1) the problem of the time-optimal incidence 
on to a fixed point x’ from a certain domain 0, of the geometrical space E” : x, xf E 0, c E 
is formulated. We will assume x’ = 0 without loss of generality. The final conditions and the 
functional take the form 

x(t,) = 0, i(t+ Q c E”; ff + min, IUISU, (1.2) 

Here Di is an admissible region of variation of the velocity vector u = i, u, = const. Also 
without loss of generality, we can fix the quantity 4, in particular, we can put u,, = 1. This 
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simplification is achieved by dividing E$. (1.1) by u,, and introducing the new time t’= d12t 
with subsequent rewriting of the expressions for X, i and f: 

It is required to construct the optimal control in the open-loop u = U* (r, x0, i”, e) or 
feedback form u, = u,*(x, V, e), the optimal phase trajectory x = x*(r, 2, n%, E), Q= u*(t, x0, 
i”, E) and the minimum value of the functional r, 
of the problem T = T(x, II, E). 

= f? (x0, i”, E) and also the Bellman function 

Note that the investigation of problem (1.1) and (1.2) may be of interest from the theoretical 
and practical points of view. Earlier [l], the limiting case of the unperturbed problem (&=O) 
was outlined. The use of the methods of perturbation theory [2] is associated with difficulties 
caused by restrictions on the control and by its non-smoothness with respect to the initial 
values of the phase variables x0 and f” and the parameter E. The construction of the perturbed 
solution requires a detailed study of the generating problem of optimal control, which is 
extremely non-trivial for n 2 2. An analytical investigation for the case of arbitrary dimensions 
is essentially equivalent to the case n = 2 (the plane problem). 

We will use the necessary conditions of optimality in the form of the maximum principle [l]. 
For convenience, we will introduce the phase variable u = i (the velocity) and write out the 
corresponding two-point boundary-value problem for the Hamiltonian system of the form 

i = IJ, i, = u* +Ef(x,u), u* = q I qlql-’ ) lu*l= 1 (1.3) 

P . = -&(q, j-:)9 4 = -p - &(q, f,‘) 

x(0) = x0 # 0, u(0) = 9, x(ff) = 0, q(Q) = 0, Ip(tf)l = 1 

Here p and q are the adjoint variables related to x and u respectively, u* is the optimal 
control, I u* I= 1, r\ is a unit vector, fi and fi are square n x n matrices, and the expressions 
corresponding to them are understood in the following sense: (q, Ku) = ((q, f):,JT where (q, j) 
is the scalar product of vectors in E”. For convenience, the vector p can be normalized so that 
I p(t,) I = 1; this will imply that optimal control u * (1.3) will be non-singular, that is q + 0. We 
shall assume that the this normalization is satisfied. To determine the 4n + 1 unknown para- 
meters (the constants of integration and time f,) we have 4n + 1 conditions, namely, 2n initial 
conditions for x and U, 2n final conditions for x and q and the normalization condition for 
Pf = Pe,). 

Thus, it is required to construct and analyse the solution of the two-point boundary-value 
problem for all x0 E D,, u” E 0, and & E[O, Ed] for fairly small E, with a specified degree of 
accuracy in E, i.e. to find 

x = x’(t, x0, UO, E), ‘u = U’(f, x0, UO, E), q = qyt, x0, IP, E) 

up = .i(f, x0, IP, e) = ?jyr, x0, IF, E), lJ* = q’lq’l-‘, ff= t;cxO, UO, E) (1.4) 

where t? is the minimum permissible time for the process to be completed. It is assumed that 
the perturbing vector-function f has smoothness properties in the variables x ED,, v E D, 
sufficient for methods of a small parameter (of perturbation theory [2]) to be applicable. 

If the open-loop optimal control up, * the corresponding phase trajectory x*, U* and the 
optimal time t? are constructed for arbitrary x0 E D,, u” E D,, then, following the optimality 
principle of the method of dynamic programming [l], it is possible to determine the optimal 
control by feedback (synthesis) u,* and the Bellman function T 

u, = f(0, x, u, E), T = t;(x, u, E) (1.5) 

To obtain expressions (1.5) the substitution t +t-to, where r, is the initial instant 
corresponding to the values x0 and u”, is carried out in up = q * (1.4). In qf and ft (1.4) the 
parameters are then assumed to be to = t, x0 =x, u” - - U, i.e. the initial values of the variables 
are assumed to be the current values; hence t-to + 0 (ultimately t + 0), x0 + x and u” + 2). 
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This procedure is of a formal nature; further investigations are required to prove it for the 
problem considered here of constructing the perturbed feedback control and the Bellman 
function. 

We will now construct the approximate (in E) solution of the problem of open-loop control 
(1.4) using the methods of the theory of regular perturbations [2]. In particular, we shall 
consider the generating problem and find the so-called zero approximation to the solution [l]. 

2. THE ANALYTIC SOLUTION OF THE UNPERTURBED PROBLEM OF OPTIMAL 
CONTROL 

As follows from the conditions of optimality (1.3), when E =0 the momenta (the adjoint 
variables) are equal: p= 5 =const, 14 I= 1; CJ = &, -t). Hence we find that the open-loop 
optimal control u,* =q=c is constant. Integrating the equations of the phase trajectory X, v 
(with E = 0) we obtain the elementary expressions u = u” + &, x = x0 + u”f + Xc?*. The final 
condition (1.3) for the vector x implies the relations which enable us to determine the vector 5 
and the instant tf when the control process is completed 

5 = -2(x0 + 19f$;2 (2.1) 

4 = 4(x02 + 2c1xol l$lrf + uq), c = (x0, u~)lrol-‘luw 

Note that the unit vector 5 is defined uniquely for a fixed value of f, > 0. From (2.1) it follows 
that t, > 0 when x0 # 0; this is also assumed from the formulation of the problem. Moreover, it 
turns out that the instant c, depends on only three parameters: the moduli Ix0 I and I u” I and 
the parameter c, which is the cosine of the angle between the vectors x0 and u”, -1 G c 6 1. 
When c = 0, +l Eq. (2.1) of the fourth degree in r, can be solved in an elementary but not 
unique (for c = -1) way, see below. 

We will now solve the equation in question and analyse its roots. The number of parameters 
can be reduced to two by introducing self-similar variables-the unknown x = cf I x0 l-l’* and the 
new parameter h =I u” II x0 I-“* . As a result, we obtain an equation of the fourth degree of the 
form 

h 

1 UT 2 % 

Fig. 1. 
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x4/4 - 1 - 2chX - h2x2 = 0, c E [-1, 11, h, x 2 0 (2.2) 

It has positive roots x* (h, c) for all permissible values of c and h (2.2). The solution of Eq. 
(2.2) can be constructed in graphic form (see Fig. 1) as the one-parameter family of functions. 
It is natural to take the quantity h, h E [0, -) as the argument and the quantity c, c E [-1, l] as 
the family parameter. In addition, it turns out that it is preferable to plot graphs of the inverse 
functions h = h * (x, c). Here x E (0, -) is regarded as the argument and h* is the corres- 
ponding root of the quadratic equation. It is convenient to plot x along the abscissa axis and h 
along the ordinate axis (vice versa is also possible which is unimportant). For each solid curve 
the corresponding values of the family parameter c are shown in Fig. 1. 

We will now consider a graphical-analytic procedure for constructing solutions of Eq. (2.2) 
and, in essence, solve the problem of the optimal control in both the open-loop and feedback 
forms. By solving (2.2) formally we obtain expressions for h*(X, c) which are real in the 
domain (x, c) E fi 

h= h,,2 i J5[-2c+Q,c)]~-~, d=[x6 -4~‘(l-c~)]~ 

52 = (x, c: x b 0, -1GcG 1, d220) 

(23) 

From (2.3) it follows that h = h(x, c), x a d(2) is the permissible non-negative root for the 
values c E [0, 11, where h(d(2), c) = 0, i.e. t,? = d(2 Ix0 I) when U’ = 0, which is obvious. It is not 
also difficult to establish that the function h = 4,(x, c) is approximated by the straight line 
h-x/2 (see Fig. 1) as x+ m. The simple asymptotic form rr*- 2 I u” I hence follows, i.e. when 
moving away from the origin with a high velocity (at the initial instant) half of the time is spent 
stopping and the second half is spent returning to the terminal manifold x=0. The 
contribution of I x0 I is relatively small and disappears when h =I u” II x0 f”+ m. As was printed 
out, if c = 0 or c = 1, when the vectors x0 and u” are orthogonal or collinear, Eq. (2.1) can be 
solved in an elementary way for x = x(h, c) 

jpl,0)=fi[h2 +(h4 +l)~]~, x(0,0)=& 

x(h,l)= h+(h2+29, x(0,1)=& 

x(h,0)=2h+~h-3+O(h-7), x(h,1)=2h+h-‘+O(hJ), It+= (x-b”) 

(2.4) 

Both curves (2.4) depend on h monotonically and have a similar behaviour when h + = but, 
when h +O, we have &(h, O)lilh +O, &(h, l)&+ 1. This means that the slope of the 
tangents is equal to x/2 and x/4, respectively, when c = 0 and c = 1, where (a > 0) : h(d(2) + a, 
0) = 21’4&1’2 +0(a3’*), h(d(2) +&, 1) = a+O(&“). Note that the relation h =&(x, c) is 
monotone in both variables in the domain (x, c) E a (it is increasing in x and decreasing in c, 
c E [O, 11 

hl(f’, c) > hdx’, c), a’, c) E Q, (f’, c) E Q, x” > x’ (2.5) 

h&, c”) > h, (x, c’), (x, c’) E Q (x, c”) E Sk c” c c’ 

The relation x = x * (It, c) will be monotonically increasing in both variables (see Fig. 1) in 
the corresponding domain (h, c) E R *. We have the estimate of difference x*(h, l)- x* (h, 
0) = h-’ + O(h”) as h + 00. 

We will now consider expressions (2.3) for negative values of c, -1 =S c < 0. The permissible 
set of roots is specified by the relations 

4(X&). ->X~X*W, -lGc<O 
h = h’(x,c) = 

h2(x,c), &q”x*(c), -1scco (2.6) 
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x* = x*(c) = 1/2(1 -c*)&, ocx*<Jz; ah/*‘*“, X+X**0 

It follows from (2.6) that the desired root h is determined by two functions h&, c) defined 
in the domain (x, c) E R by (2.3). Both branches h, and h, join smoothly at the points of the 
line (for fiied values of c, -1 cc<O) in which the discriminant is zero, d* = 0. The set of these 
points forms the monotone curve (shown by the dashed line) 

h=h(X)=(p-X*/4)H, O<X”& (2.7) 

If the parameter c is fixed, then the joining of the branches 111 and h, occurs on the curve 
b(x) at the point (x*, he) 

x* =Jz(l-c*)X 9 h, =Iclx;’ =Icl/(Jz(l - c2)J$ (2.8) 

Again we note that the tangent to the curve h*(~, c) at this point is vertical and the tangent 
to the curve x*(/r, c) is horizontal. 

Consider the limiting case c = -1 (the vectors $ and u” are anticollinear). For h = h * (x, -1) 
we have two permissible limit expressions (x* = x * (-1) = 0, h * (-1) = +=) 

h = h&, -1) = x-’ + x/2, = > x > 0 

h=h*(X,-1)=X-‘-@, o<&? 
(2.9) 

These curves “bound” the families of curves h&x, c) as c + -1; the qualitative analysis of 
them is fairly elementary. It is important to note that h&, * -1) -_) Q) as x + 0, moreover 
4 >h, (d(2) 3 x >O). Furthermore, we have &(4(2), -1) =0 while h,(J(2), -1) = J(2) is the 
minimum value. In addition we note that h(x, -1) -4(x, -1) = x + 0 as x + 0, h,(x, -1) -4(x, 
1) + 0 (from above) as x + ~0, and 4(4(2), 1) =hJ6(2), -1). The branches h = 4,*(x, -1) are 
solved in an elementary way for the unknown x, and non-uniquely for h = 4 (see Fig. 1). 

Thus, we have established that the family of curves h *(x, c) is enclosed in the “infinite 
curvilinear triangle” bounded by the curves 4(x, kl) and h.Jx, -1) on the corresponding sets 
of values of x. An analogous assertion holds for the family of curves x*(h, c). The curve of 
“joining” h = h*(x) (2.7) is inside the “triangle” and strictly between the curves h,*(x, -1); 
more precisely, 4(x, -1) > h*(x) > h.& -l), 0 < x 6 d(2). 

We will now continue to analyse the “fine structure” of the family of curves h*(X, c) (2.6). 
The behaviour of the bounding curves h&, -l), 0 c x G J(2) and the joining curve h*(X) 
implies that, as c becomes smaller, the dependence of x = x * (h, c), c* > c 3 -1 on h will be non- 
unique beginning with a certain value c*, O>c* >-1. This means that points of local extrema, 
for which the condition ah, /& = 0 holds, appear on the curve h(x, c), c d c*, x > x*, see (2.8). 
Solving this equation for x we find the desired quantity c* and also the extremum points. It 
turns out there are only two such points: the point of maximum and the point of minimum. 
Thus, we have (see Fig. 1) 

c, = -di /3 1: -1 + l/18, -1 d c S c, (2.10) 

x _.n,in (c) = [6c2 -4T61cl(c2 -8/9)x]x >x,(c) 

As c + -1, the point x + 0 and the point xmin + 42; here h&c)= &(x_(c), c) + W, and 
L(c)= h&,(c), c) + E is the minimum value of h(x, -1) (see above and Fig. 1). It is 
interesting to estimate the excess of h&c) over the quantity h(X*(c), c) corresponding to the 
joining point (2.8). We have 

~_(c)=(8&)y4(1+(15/8)&+0(&~)), c=-I+& 

~,(x_(c),c)=(~&)-Y4(1+(9/8)Sc+O(&2)), &>O 
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(2.11) 

By (2.11) this excess is insignificant and tends to zero quite rapidly as & + 0. 
The above analysis of the function h = h*(~, c) (2.3), (2.6) provides an algorithm for 

constructing the solution of the unperturbed problem of the optimal open-loop control 
according to (2.1). Suppose the initial vectors x0 and u” are known. Using these the quantities 
h =I u” II x0 l-1’2 and c = (x0, u”) I x0 I? u” I-’ are constructed and the minimum root x = x * (h, c) of 
Eq. (2.2) is found by a numerical or graphical-analytical method (see Fig, 1). For 0 G cd 1 the 
dependence is one-to-one and monotonically increasing both in the argument h and in the 
family parameter c. The function x = x*(h, c) is single-valued and smooth in the range of 
variation of the parameter c, 0 3 c > c* = - J(8/3) but is not one-to-one: the same values of x 
may correspond to two different values of the argument h, i.e. the function h = h*(x, c) is two- 
to-one in a certain range of variation of x. Thus, for values la c > c* = -4(8/3) the smooth 
single-valued dependence x = x * (h, c) occurs for all h a 0 and hence a smooth single-valued 
solution of the optimal control problem with respect to the initial data exists. 

The situation changes in a qualitative and important way for the values c in the range 
-l<c~c*=-J(8/3). If the value of h is “not too large”, i.e. O~h<&(c), then the 
dependence of the minimum root x = x*(h, c) is single-valued and smooth. When the 
argument h passes (increasing or decreasing) through the value (hPh,_), a sudden change in 
the quantity x = x * (h, c) by a finite significant amount *AX occurs 

Ax = x’&,,(c) + 0, c) - x_(c) = 2&(c) (1 - h-A + 0(&J), h, + = (2.12) 

As c + -1 the difference (2.12) increases without limit and, by (2.11), we have the estimate 
AXQ 2(8&)-1’4, & + 0 for the jump. A further increase in the parameter h (h > h&c)) again 
leads to a single-valued monotone dependence, analogous to the case 0 d c s 1. Note that the 
range of values of the parameter c, c* 3 ~3-1, in which the irregularity mentioned above 
occurs, is extremely narrow c * +l = -4(8/3)+1=1/l& i.e. the vectors x0 and u” are practically 
anticollinear. The sine of the angle s between them is small: I s Is 113. 

Thus, the fairly dense family of curves h = h * (x, c) enables us to solve the unperturbed 
problem of the time-optimal “hard encounter” both by the open-loop (1.4), (2.1) and feedback 
(1.5) control (E = 0). The feedback control requires fairly accurate measurement of the phase 
vector (x, u) at any current instant t. The optimal controlling vector u,, i.e. the unit vector 5, is 
also determined at each instant of time 

u, = s’(X, u) = -2(x + uT)T-2, T = +, u) (2.13) 

The Bellman function of the problem T =T(x, u) is the time interval “preceding the 
encounter” when motion from the admissible position (t, x, u) occurs. 

Notes. 1. A somewhat more general case of restrictions on a control can be reduced to the problem 

investigated above. Suppose we have a controllable system of the form X= V, 6=u, u = AU, where 
I VI d 1, and A is a non-degenerate n x tz matrix, i.e. the set of controls is the non-degenerate ellipsoid 
@A-‘, Un-‘) d 1. By the non-singular substitution x - - AX, u = AV this system can be reduced to the form 

of the system examined above. 
2. The problem of the “hard encounter H can be reduced to solving and analysing the roots of an 

equation of the fourth degree, similar to (2.1) or (2.2) to a constant acceleration i = u + W, w = const, 

I w I= w, c 1. In this case the number of parameters increases considerably (by three) 

(1-w2~44/=1+2c~+~~+w&cz+c&.) (2.14) 

c, = (w$, xol@), c, = (M&, u%ol-‘) 
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When w,al the methods of perturbation theory can be applied to (2.14) (see Section 4). Near the 

value h_(c) the expansions of x are carried out in fractional powers of the parameter w0 (in powers of 

Wy”). 

3. Suppose we consider n 3 2 controllable systems with one degree of freedom: j;= y, I u, Icu,~, 
i=l, . . . . n. We will solve the problem of time-optimal incidence on the axes .v,(t,)=O, where I;,(r,) is 
arbitrary. We have the controls u, = -uiosign$ and the quadratic equations to find the instants t, : xp + 

u,r,+~u,t;2 =o, i=l, . . . , n. Let us require that these conditions are to be satisfied at the same instant of 

time fi =+ We then obtain the desired values of the controls u, =-2(x; +up$)#-‘. If the condition 
u,“+ *** +ui = 1 is imposed, then an equation of the fourth degree, which reduces to (2.2), is obtained for 
finding the unknown quantity. By choosing the minimum root ?F we find the controls ui which reduce 
the variables x, to zero simultaneously in the same minimum period of time. When using this approach, 

the quantities u10 may have no meaning; the quantities u, certainly have the meaningful sense as the 

components of the control vector u for an n-dimensional dynamical system. 

4. It is interesting to note that some relations analogous to those obtained above in Section 2 also hold 
in the problem of enduing misses [3]. 

3. AN ALGORITHM FOR THE APPROXIMATE SOLUTION OF TBE PERTURBED 
PROBLEM 

Let us consider the perturbed boundary-value problem of the maximum principle (1.3). In 
the first stage of discussions we shall assume that the optimal time f, is given and, using the 
methods of perturbation theory, we shall find the variables x, u,p, q with the desired degree of 
accuracy in E as the solution of the system of 4n integral equations 

P’pf”&P, q=pf(i-f-r)+&Q, u*=qlqi-‘=lf+&U 

lJf=pfIpfi-‘, eU = (qf + eN)Iqf + ENI-’ - qf, N = Qlpk'(t,- t)-’ 

u=lP+qh+N, x =x0 f uot + l/2$2 + &x 

P=-j (q,f;W, Q=-j r~~(q,~~)l~~ (3.1) 

v=j (U+f)& x5; vdz=j (t-T)(u+f)& 
0 0 0 - 

Here we have in~~uced the parameter E and the non-linear integr~ operators P, Q, U, V, 
X of the variables q, u, x containing the unknowns pf, tf fir is considered to be given for 
now). Without loss of generality and in accordance with the maximum principle we can put 
Ipf I= 1 in (3.1); then 7’ =pf is the constant unit vector to be determined from the final 
condition for x. 

The functions q, u, x (the vector p is not needed) are constructed by successive 
approximations in powers of E (Picard’s scheme) or by Taylor-series expansions (in the case 
when the function f is sufficiently smooth in x and u). The recurrent scheme for determining 
the unit vector nf and the control U* may be realized simuhaneously with the one mentioned. 
As a result we have the algorithm 

(3.2) 
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i=l,2 ,...,; po=T& qO=r&t,-t), u;=lJof 

Ilo = v” + I$, x0 =x”+lPt+~T&2, Tjof = -2t3xO + IPff ) 

The operators c_1, &, Ui_,, v-1, Xi_1 are defined in terms of qi+ Q, xi_r and &, i.e. 
they are known functions of the parameters x0, u”, E and tf. By the theorem on the 
contraction operator [4], when E >O is sufficiently small, the successive approximations 
converge uniformly in a certain domain x0 E Q, u” E D,, 0 c t* c tf s t* c = and determine the 
relation for finding t, 

x4/4 - 1 - 2chX - h2x2 = &IQ, x”, v”, E) 

K(X, x0,1$‘, E) I 21x01-‘(c, + c,hx)IXfl (3.3) 
c, = (xot&Jl-‘, x&V), c, = (u%Ol-‘, xJlx+‘) 

Here Xf = X’(x, x0, uo, E) is a known function which is constructed by the scheme (3.2) 
with the prescribed range of accuracy. It is sufficiently smooth with respect to the parameter x 
over a certain range of variation of x which can be as large as desired when E + 0. For the 
purpose of reducing the number of parameters in the generating equation (E = 0) the unknown 
x = tf I x0 I-“’ and the parameters h =I u” II x0 l-l’*, c = (x0 I x0 I-‘, u” I u” I-‘) specified by measure- 
ments have been introduced by dividing by (x0)* in (3.3). The coefficients c, and c,, i.e. k, take 
into account the perturbation f in system (1.1); they are computed by means of the recurrent 
scheme (3.2). Note that the representation of the equation specifying t6 in the form (3.3) may 
turn out to be inconvenient because of the presence of I x0 I-l, Iv 1-l 
preferable to use the representation in the form of perturbed equation (2.1) 

IX’ 1-l . It is then 

$4 - $2 - 2(x0, “0)~ - I@ = 2&(x+ + ‘UOrf, xr) (3.4) 

It is required to construct the solution of the problem of the optimal control, i.e. to find the 
minimum root t; = min(tf] of Eq. (3.4) or (3.3). Everywhere, outside of a small vicinity of the 
point x,(c), L,(c), c G c*, the dependence of t; on E will be smooth and the quantity tf can 
be found in an analytic way to the desired degree of accuracy in E by means of the recurrent 
scheme of the method of successive approximations [5]. The function t; is irregular (it has a 
discontinuity of the first kind in the variables E, x0, u”) near the singular point. The use of 
more precise numerical methods or more precise analytic constructions of the function 
h = h*(x, c, x0, u”, E) and the determination of its maximum in x are required here. It is 
possible to realize these procedures in an algorithmic way on a computer. Thus, the 
approximate solution (with a given degree of accuracy in E) of the perturbed problem of the 
time-optimal “hard encounter” has been reduced to the determination of the minimum root 
rf* (x0, u”, E) of Eq. (3.4) (or (3.3)). 

4. EXAMPLE 

Let us consider the special case of a perturbing functionf, linear in x and v 

f(x, u) = w + Lx + Ku; W, L, K = const (4.1) 

Here L and W are arbitrary n xn matrices and W is an n-vector. By the scheme of Section 3, 
we will find the solution of the time-optimal control problem to a first approximation in E. By 
(3.2) we have the expressions (with an error of O(E*)) 

P(1) =lllf +%/2%f(+ -t). 4(l) =(I+eDlf(‘r. -t> 

S=)/2[K~+~L~(ff-t)](r~-t)r~o+~~t+~~t2 (4.2) 
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Here I is the identity matrix, the matrices Ri (i = 0, 1, 2) are obtained by expanding R in 
powers of t: R = & + R,t + Rzf’, i.e. by substituting the matrix coefficients Si, which depend on 
the unknown t,, for the matrix S. By equating xcl,(t,) = 0 we obtain the desired formula for the 
unit vector q’ to a first approximation in e 

r& = 5 - 2&tj’xof, 5 = -2t;2@ + “Of,) 

x,f = x(tf,,tf,~,x O,UO) (4.3) 

Here Xi depends on tf and the initial values x0 and u”. From the condition II& I= 1 we 
obtain an equation of the form (3.4) defining the unknown tr 

t; /4-xm - 2(x0, “99 -lPtj =&Q(t,,x”,uo) 

8=t~(x”+uotf,ao+~a,tf+~a2t~)lq,=~=2(n0+uotf,Xof) 

t; = min(tf}. f; =t;(x’,U’,E) 

(4.4) 

Let t; be the simple minimum root of Eq. (4.4) when E = 0, constructed as in Section 2. We 
then obtain 

fj(,) =tJo +&Q(t;O,xo,Uo)[t;‘, -2(x0,u0)-2umt;,]-’ 

to a first approximation in e. 

(4.5) 

In the case of a simple root, the expression in square brackets is non-zero. At the point of a 
local maximum of the function h = h* (x, c) (see (2.10) and (2.11)) the root t,$ is of double 
multiplicity and the expression in square brackets in (4.5) vanishes. Hence the expansions must 
be carried out in powers of JE 

fJ(,) = t;. +&t;] + Et;* + O(EK) 

tie = t;,(lxOl,luOl,c), t;, = -[20, / <3tJo -2dy (4.6) 

ti2 = [(o;,), -t;ot;;](3t;o -2dy’, 80 = o(t;o,xo,uo) 

Formulae (4.3)-(4.6) of the first approximation are also valid in the case of an arbitrary 
perturbing function J If f is linear then X’ has form (4.2)4.4). Note that expression (4.6) for 
tf; must be real. 

Let L = K = 0, i.e. f = W = const. From (4.2) it then follows that the matrices R = S = 0, the 
open-loop control u(,, = 11’ = const, the vector a, = W and a1,2 = 0; the function X = j$Wt". 
Equation (4.4) for evaluating tf reduces to form (2.14); O= t$x’+u’t,, W). Note that if the 
perturbing function fpossesses spherical symmetry in x and U, i.e. L = II, K = kl (I and k are 
scalars and I is the identity matrix), then the control is r+) = $, similar to the case L = K = 0 
since R = 0 in consequence of the identity S = ($, S$)Z. The vectors ai in function (4.2) are 
given by 
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ao=W+fxO+kuO, 01, =kr)r+luO, ac*=IhlW-tf (4.7) 

As has been proved, for the first approximation in E, the expression $ = 5 = -2r;2(~o + u’t,) 
must replace n’ in (4.7). The further computation of the unknown t; is carried out by the 
above-mentioned scheme. 

In conclusion we note that the analogous procedure of the approximate solution of the 
problem of “hard encounter” (in the variable x) can be generalized for a time-dependent 
system f = f(t, x, II, u). The basic method turns out to be suitable in the case of systems with 
slowly varying parameters and others, for instance, of the form f = -ti + u + &f. In this case the 
procedure for maximizing the function (4, u + of), I u I G 1, see [2], is required. 

This research was supported financially by the Russian Foundation for Fundamental 
Research (93-013-16286) and the International Science Foundation. 

REFERENCES 

1. PONTRYAGIN L. S., BOLTYANSKII V. G., GAMKRELIDZE R. V. and MISCHENKO Ye. F., 7he 
Mathematical Theory of Optimal Processes. Nat&a, Moscow, 1969. 

2. AKULENKO L. D., Asymptotic Methods of Optimal Control. Nauka, Moscow, 1987. 
3. KUZNETSOV A. G. and CHERNOUS’KO F. L., An optimal control which minimizes the extremum of a function 

of phase coordinates. Kibernetika 3, S&55,1968. 
4. VULIKH B. ‘Z., Introduction to Functional Analysis. Nauka, Moscow, 1967. 
5. KOLLATZ L., Functional Analysis and Computational Mathematics. Mir, MOSCOW, 1969. 

Translated by A.S. 


